Using the Rd Rational Arnoldi Method for Exponential Integrators

نویسنده

  • PAOLO NOVATI
چکیده

In this paper we investigate some practical aspects concerning the use of the Restricted-Denominator (RD) rational Arnoldi method for the computation of the core functions of exponential integrators for parabolic problems. We derive some useful a-posteriori bounds together with some hints for a suitable implementation inside the integrators. Numerical experiments arising from the discretization of sectorial operators are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection∗

Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi met...

متن کامل

A Krylov Subspace Algorithm for Evaluating the Φ-functions Appearing in Exponential Integrators

We develop an algorithm for computing the solution of a large system of linear ordinary differential equations (ODEs) with polynomial inhomogeneity. This is equivalent to computing the action of a certain matrix function on the vector representing the initial condition. The matrix function is a linear combination of the matrix exponential and other functions related to the exponential (the so-c...

متن کامل

Uniform Approximation of φ-Functions in Exponential Integrators by a Rational Krylov Subspace Method with Simple Poles

We consider the approximation of the matrix φ-functions that appear in exponential integrators for stiff systems of differential equations. For stiff systems, the field-of-values of the occurring matrices is large and lies somewhere in the left complex half-plane. In order to obtain an efficient method uniformly for all matrices with a field-of-values in the left complex half-plane, we consider...

متن کامل

A Moment-Matching Arnoldi Iteration for Linear Combinations of φ Functions

The action of the matrix exponential and related φ functions on vectors plays an important role in the application of exponential integrators to ordinary differential equations. For the efficient evaluation of linear combinations of such actions we consider a new Krylov subspace algorithm. By employing Cauchy’s integral formula an error representation of the numerical approximation is given. Th...

متن کامل

Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions

A superlinear convergence bound for rational Arnoldi approximations to functions of matrices is derived. This bound generalizes the well-known superlinear convergence bound for the CG method to more general functions with finite singularities and to rational Krylov spaces. A constrained equilibrium problem from potential theory is used to characterize a max-min quotient of a nodal rational func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011